Effective Date: September 2018 Expiration Date: September 2023

423-PLAN-001, Revision A
Earth Science Data and Information Systems Project (ESDIS), Code 423

Operation IceBridge Data Management Plan

Operation IceBridge Data Management Plan Signature/Approval Page

Reviewed by:

Signature obtained on file

09/13/2018

Jeanne Behnke

ESDIS Deputy - Operations

GSFC - Code 423

Date

Date

Signature obtained on file

09/21/2018

Steve Tanner

DAAC Operation IceBridge

Manager

National Snow and Ice Data

Center

Approved by:

09/24/2018

Signature obtained on file _______ 09/24
Andrew Mitchell Date

ESDIS Project Manager

GSFC - Code 423

09/20/2018

Signature obtained on file
Joseph MacGregor

Operation IceBridge Project

Scientist

GSFC - Code 615

Amanda Leon

Date

Signature obtained on file

09/18/2018

NSIDC DAAC Manager

National Snow and Ice Data

Center

Date

[Electronic] Signatures available in B32 Room E148 online at: / https://ops1-cm.ems.eosdis.nasa.gov/cm2/

Preface

This document is under ESDIS Project configuration control. Once this document is approved, ESDIS approved changes are handled in accordance with Class I and Class II change control requirements described in the ESDIS Configuration Management Procedures. Changes to this document shall be verified by a document change notice (DCN) and implemented by change bars or by complete revision.

This document contains information pertaining to the Operation IceBridge Data Management Plan.

Any questions should be addressed to: <u>esdis-esmo-cmo@lists.nasa.gov</u>

ESDIS Configuration Management Office NASA/GSFC Code 423 Greenbelt, Md. 20771

Abstract

This document is a detailed plan for all management of Operation IceBridge data throughout its project lifecycle ending in 2020. Its content is applicable to all data providers and all data sets unless specific exceptions are made.

Keywords: IceBridge, NSIDC DAAC, CReSIS, LIDAR, WFF, GSFC, NSERC, CIRRUS, UARC, DMS, Lamont-Doherty, WISE

Change History Log

Revision	Effective DATE	DESCRIPTION of Changes
Original, Baseline	05/01/2013	CCR 423-ESDIS-43; CCB approved 04/30/2013 Pages: All
Revision A	09/24/2018	CCR 423-ESDIS-195; CCB approved 09/07/2018 Pages: Cover through 25 Acronyms; Extended project lifecycle; revised to current; see DCN for full details

Table of Contents

List of Tables

Effective Date: September 2018

1 INTRODUCTION

1.1 Purpose

The purpose of a Data Management Plan (DMP) is to address the management of data from Earth science missions, from the time of their data collection/observation, to their entry into permanent archives. The NASA Procedural Requirements (NPR) 7120.8 document states the requirement for a data management plan. Consistent with this requirement, for each of the Earth science missions, NASA Earth Science Division (ESD) requires the responsible projects to develop a DMP as stated in the Level 1 Requirement below:

"All terms and conditions of the transfer of data products and associated information to the NASA Earth Science Division (ESD)-assigned data center shall be documented in a Data Management Plan that has been approved by the Earth Science Data and Information System Project."

1.2 Scope

This document outlines a detailed plan for all aspects of Operation IceBridge data management throughout its project lifecycle until 2020. Its content is applicable to all data providers and all data sets unless specific exceptions are made.

1.3 Related Documentation

The latest versions of all documents below should be used. The latest ESDIS Project documents can be obtained from URL: https://ops1cm.ems.eosdis.nasa.gov. ESDIS documents have a document number starting with either 423 or 505. Other documents are available for reference in the **ESDIS** project library website http://esdisfmp01.gsfc.nasa.gov/esdis_lib/default.php unless indicated otherwise.

1.3.1 Applicable Documents

The following documents are referenced within or are directly applicable, or contain policies or other directive matters that are binding upon the content of this document.

NPR 7120.8	NASA Research and Technology Program and Project Management Requirements
	NASA Earth Science Data and Information Policy
423-SPEC-	NASA Earth Science Preservation Specification
001	

Effective Date: September 2018

1.3.2 Reference Documents

The following documents are not binding on the content but referenced herein and, amplify or clarify the information presented in this document.

NASA Operation IceBridge
Level-1 Science Requirements and Scientific Basis.

2 OVERVIEW

2.1 Mission Description

The Operation IceBridge mission, initiated in 2009, collects airborne remote sensing measurements to bridge the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission and the upcoming ICESat-2 mission. Operation IceBridge survey areas include the Greenland and Antarctic ice sheets, Canadian ice caps, Alaskan glaciers, and sea ice in the Arctic and Southern oceans.

Operation IceBridge combines multiple instruments to map ice surface topography, bedrock topography beneath the ice sheets, grounding line position, ice and snow thickness, and sea ice distribution and freeboard. Data from laser altimeters and radar sounders are paired with gravimeter, magnetometer, mapping camera, and other data to provide dynamic, high-value, repeat measurements of rapidly changing portions of land and sea ice.

3 REQUIREMENTS

3.1 Science Data Generation and Documentation

- 3.1.1 All Operation IceBridge data products shall conform to the terms and conditions of the NASA Earth Science Data and Information Policy, which can be found at: http://science.nasa.gov/earth-science/earth-science-data/data-information-policy/.
- 3.1.2 Operation IceBridge data providers shall be assigned the responsibility of producing data products for their respective instruments.
- 3.1.3 To keep end-to-end consistency, Operation IceBridge data providers shall reprocess any given data product (in its entirety, including data from earlier IceBridge campaigns) that requires an algorithm change.
- 3.1.4 To keep end-to-end consistency, Operation IceBridge data providers shall reformat any given data product (in its entirety, including data from earlier campaigns) that requires a format change.
- 3.1.5 By the end of mission, Operation IceBridge data providers shall provide all documentation necessary for final archival purposes as spelled out in the NASA Earth Science preservation document at: https://earthdata.nasa.gov/user-resources/standards-and-references/preservation-content-spec
- 3.1.6 Operation IceBridge data providers shall provide documentation, as specified by NASA/ NSIDC documentation content requirements to facilitate users' understanding and use of their data products. NSIDC User Services will provide template documentation upon request and

will work with data providers to develop appropriate documentation.

- 3.1.7 Operation IceBridge data providers shall submit product documentation to the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) as early as possible before the first delivery of a new product, and be available to work with NSIDC technical writers, to facilitate establishment of the new product. For subsequent data deliveries, data providers shall submit updates to documentation within one week after the submission of data to the NSIDC DAAC for ingest, archive and distribution.
- 3.1.8 Operation IceBridge L1B and L2 data products shall be organized and partitioned temporally, following each flight's trajectory.

3.2 Science Data Format and Metadata

- 3.1.1 Operation IceBridge data product formats, with the exception of Level 0 or raw data, shall conform to one of the NASA ESD approved Data System standards. The formats will be selected in collaboration with the ESDIS Project and documented in the Data Stewardship section of this Data Management Plan. The list of existing approved standards, along with guidelines for approval of new standards, can be found at: https://earthdata.nasa.gov/user-resources/standards-and-references. Once decided upon and agreed to, a data set's format should be kept consistent for all future deliveries, unless renegotiated with a plan for reprocessing of existing data.
- 3.1.2 All data submissions to the NSIDC DAAC shall have accompanying spatial, temporal, and product metadata that adhere to ESD-approved specifications at: https://earthdata.nasa.gov/user-resources/standards-and-references.

4 PROVIDERS, PRODUCTS, AND DEADLINES

This section describes each of the individual data providers, their instruments, the data products that they generate, and their associated submission deadlines. For each data product, the following information is provided.

- Product collection short name
- A brief product description
- Data processing level
- Data format
- Estimated data volume per campaign (GB)
- Submission schedule
- Provider contact information
- Delivery mechanism

Individual providers are required to work with NSIDC on the most appropriate delivery mechanism to use based upon current NASA security requirements, data volume and ease of delivery. Current delivery mechanisms include File Transfer Protocol (FTP_, GridFTP, Secure FTP (SFTP), Serial Converter Processor (SCP), and the shipping of physical hard-drives.

4.1 NASA Wallops Flight Facility

NASA Goddard Space Flight Center's (GSFC) Wallops Flight Facility (WFF), located on Virginia's Eastern Shore, was established in 1945 by the National Advisory Committee for Aeronautics, as a center for aeronautic research. The research and responsibilities of WFF are centered on the philosophy of providing a fast, low cost, highly flexible and safe response to meet the needs of the United States' aerospace technology interests and science research.

Provider POCs	Email Address
Michael	Michael.Studinger@nas
Studinger	a.gov
Jim Yungel	James.K.Yungel@nasa.g
	ov

4.1.1 Instruments and Science Data Products

4.1.1.1 Airborne Topographic Mapper

The Airborne Topographic Mapper (ATM) is a scanning Laser Imaging Detection and Ranging (LIDAR) developed and used by NASA for observing the Earth's topography for several scientific applications, foremost of which is the measurement of changing Arctic and Antarctic ice sheets and glaciers. It typically flies on aircraft at an altitude between 400 and 800 meters above ground level, and measures topography to an accuracy better than ten centimeters by incorporating measurements from global positioning system (GPS) receivers and inertial navigation system (INS) attitude sensors.

Table 4-1. ATM Products

		Dat		Volume		- ·
Short	Product	a Lev	Form	per Campai	Submission	Delivery Mechani
Name	Description	el	at	gn (GB)	Schedule	sm
ILATM0	IceBridge ATM	0	Binary	175	6 months	FTP or
	L0 Raw Ranges					equivalen
						t
ILATM1B	IceBridge ATM	1B	HDF5	500	6 months	FTP or
	L1B Qfit				following	equivalen
	Elevation and				deployment	t
	Return Strength				end	
ILATMW1	IceBridge ATM	1B	HDF5	75	6 moths	FTP or
В	L1B Elevation				following	equivalen
	and Return				deployment	t
	Strength with				end	
	Waveforms					
ILATM2	IceBridge ATM	2	Fixed	2	6 months	FTP or
	L2 Icessn		format		following	equivalen
	Elevation, Slope,		ASCII		deployment	t
	and Roughness				end	
IDHDT4	IceBridge ATM	4	Fixed	0.2	6 months	FTP or
	L4 dh/dt		format		following	equivalen
			ASCII		deployment	t
					end	

4.1.1.2 Narrow Swath Airborne Topographic Mapper

The NASA IceBridge Narrow Swath ATM Level-1B Qfit Elevation and Return Strength (ILNSA1B) data set contains spot elevation measurements of Greenland, Arctic, and Antarctic sea ice acquired using the NASA ATM 4CT3 narrow scan instrumentation.

Table 4-2. Narrow Swath ATM Products

Short Name	Product Description	Data Leve l	Form at	Volume per Campaig n (GB)	Submission Schedule	Delivery Mechani sm
ILNSA1	IceBridge Narrow	1B	HDF5	30	6 months	FTP or
В	Swath ATM L1B				following	equivalen
	Elevation and				deployment	t
	Return Strength				end	

4.1.1.3 Continuous Airborne Mapping By Optical Translator

The NASA IceBridge Continuous Airborne Mapping By Optical Translator (CAMBOT) L1B Geolocated Images data set contains images taken over Antarctica and Greenland. The data set contains original CAMBOT files and full

size Joint Pictures Expert Group (JPEG) images, with associated Keyhole Markup Language (KML) files, rotated and reduced-resolution Portable Network Graphics (PNG) image files, and position, altitude and trajectory files.

Table 4-3. CAMBOT Products

		Dat a		Volume per		Delivery
Short Name	Product Description	Lev el	Form at	Campaig n (GB)	Submission Schedule	Mechani sm
IOCAM1 B	IceBridge CAMBOT L1B Geolocated Images	1B	jpeg	500	6 months following deployment end	Hard drive

4.1.1.4 KT19 Infrared Radiation Pyrometer

The NASA IceBridge KT19 IR Surface Temperature data set contains surface temperature measurements of Arctic sea ice and land ice acquired using the Heitronics KT19.85 Series II Infrared Radiation Pyrometer alongside the NASA ATM instrument.

Table 4-4. KT19 Infrared Radiation Pyrometer Products

Short Name	Product Description	Dat a Lev el	Form at	Volume per Campaig n (GB)	Submission Schedule	Delivery Mechani sm
IAKST1B	IceBridge KT19 IR Surface Temperature	1B	Fixed format ASCII	0.5	6 months following deployment end	FTP to NSIDC

4.1.1.5 Pathfinder Advanced Radar Ice Sounder

The IceBridge Pathfinder Advanced Radar Ice Sounder (PARIS) data set contains Greenland ice thickness measurements acquired using the Pathfinder Advanced Radar Ice Sounder (PARIS). The transmit waveform of this radar sounder is a 5 MHz bandwidth chirp generated by a commercial Direct-Digital Synthesizer (DDS) chip. The chip also applies a trapezoidal envelope to the pulse, minimizing unwanted sidebands. The 250 W amplifier uses a class AB mode of operation to ensure high linearity and thus preserve the pulse's low sidebands. Bench tests of the amplifier demonstrated a two-tone third-order inter-modulation of better than -20 dBc measured at PO = 250 W

Table 4-5. KT19 Infrared Radiation Pyrometer Products

		Dat		Volume		Dolivony
Short	Product	l a Lev	Form	per Campaig	Submission	Delivery Mechani
Name	Description	el	at	n (GB)	Schedule	sm
IRPAR2	IceBridge	2	ASCII	<1	6 months	FTP to
	PARIS L2 Ice				following	NSIDC
	Thickness				deployment	

		Dat		Volume		
		a		per		Delivery
Short	Product	Lev	Form	Campaig	Submission	Mechani
Name	Description	el	at	n (GB)	Schedule	sm
					end	

4.2 University of Kansas Center for Remote Sensing of Ice Sheets

The Center for Remote Sensing of Ice Sheets (CReSIS) is a Science and Technology Center (STC) established by the National Science Foundation (NSF) in 2005, with the mission of developing new technologies and computer models to measure and predict the response of sea level change to the mass balance of ice sheets in Greenland and Antarctica. The NSF's STC program combines the efforts of scientists and engineers to respond to problems of global significance, supporting the intense, sustained, collaborative work that is required to achieve progress in these areas. NSF STC support ended in 2015, but CReSIS continues to operate with other external awards and university support.

Provider POCs	Email Address
Carlton	leuschen@cresis.ku.ed
Leuschen	u
John Paden	paden@ku.edu

4.2.1 Instruments and Science Data Products

4.2.1.1 Multichannel Coherent Radar Depth Sounder

This Multichannel Coherent Radar Depth Sounder (MCoRDS) radar typically operates over the frequency range from 180 to 210 MHz on the NASA P-3 and 165 to 215 MHz on the NASA DC-8 with multiple receivers developed for airborne sounding and imaging of ice sheets. Multiple receivers permit digital beamsteering for suppressing cross-track surface clutter that can mask weak ice-bed echoes and strip-map Synthetic Aperture Radar (SAR) images of the ice-bed interface. With 1225 W of peak transmit power on the P-3 and a peak transmit power of 6000 W on the DC-8, a loop sensitivity of >230 dB is achieved.

Table 4-6 MCoRDS Products

		Dat		Volume	Submiss	
		a		per	ion	Delivery
Short	Product	Lev	Form	Campaig	Schedul	Mechani
Name	Description	el	at	n (GB)	e	sm
IRMCR1	IceBridge MCoRDS	1B	NetCD	100	6 months	FTP
В	L1B Geolocated		F			
	Radar Echo Strength					
	Profiles					
IRMCR2	IceBridge MCoRDS	2	CSV	1	6 months	FTP
	L2 Ice Thickness					
IRMCR3	IceBridge MCoRDS	3	ASCII	1	6 months	FTP

		Dat		Volume	Submiss	
		a		per	ion	Delivery
Short	Product	Lev	Form	Campaig	Schedul	Mechani
Name	Description	el	at	n (GB)	e	sm
	L3 Gridded Ice					
	Thickness, Surface,					
	and Bottom					

^{*} IRMCR3 volume per campaign is dependent on availability of flight grids and community need for gridded products.

4.2.1.2 Snow Radar

This ultra-wideband radar operates over the frequency from 2 to 8 GHz to map near-surface internal layers in polar firn with fine vertical resolution. Starting in 2017 the Snow Radar was replaced with a single system which operates from 2-18 GHz, sub-band processing of the data will be done to provide simulated data from the historic 2-8 GHz system. The radar also measures the thickness of snow over sea ice. Information about snow thickness is essential to estimate sea ice thickness from ice freeboard measurements performed with satellite radar and laser altimeters.

Table 4-7. Snow Radar Products

		Dat		Volume	Submiss	
		a		per	ion	Delivery
Short		Lev	Form	Campaig	Schedul	Mechani
Name	Product Description	el	at	n (GB)	e	sm
IRSNO1	IceBridge Snow	1B	NetCD	250	6 months	FTP
В	Radar L1B		F			
	Geolocated Radar					
	Echo Strength					
	Profiles					

4.2.1.3 Accumulation Radar

This radar provides fine depth resolution profiling of the top 100 m of the ice column. It is designed to map variations in the snow accumulation rate. When operated from aircraft, it operates from 600 to 900 MHz providing 28-cm depth resolution in ice.

Table 4-8. Accumulation Radar Products

		Dat		Volume	Submiss	
		a		per	ion	Delivery
Short		Lev	Form	Campaign	Schedul	Mechani
Name	Product Description	el	at	(GB)	e	sm
IRACC1	IceBridge	1B	NetCD	150	6 months	FTP, sftp,
IMICCI	100Bilage	1				/ 1 /

			Dat a		Volume per	Submiss ion	Delivery
	Short		Lev	Form	Campaign	Schedul	Mechani
	Name	Product Description	el	at	(GB)	e	sm
ſ		L1B Geolocated Radar					
		Echo Strength Profiles					

4.2.1.4 Ku-Band Radar Altimeter

This wideband radar altimeter operates over the frequency range from 12 to 18 GHz. The primary purpose of this radar is high precision surface elevation measurements over polar ice sheets. The data collected with this radar can be analyzed in conjunction with laser-altimeter data to determine thickness of snow over sea ice. Starting in 2017, the Ku Radar was replaced with a single system which operates from 2-18 GHz (3.2.1.2), sub-band processing of the data will be done to provide simulated data from the historic 12-18 GHz system.

Table 4-9 Ku-Band Radar Altimeter Products

Short Name	Product Description	Dat a Lev el	Form at	Volume per Campaig n (GB)	Submiss ion Schedul e	Delivery Mechani sm
IRKUB1	IceBridge Ku-Band	1B	NetCD	250	6 months	FTP
В	Radar L1B		F			
	Geolocated Radar					
	Echo Strength					
	Profiles					

4.3 NASA Goddard Space Flight Center

NASA's Land, Vegetation and Ice Sensor (LVIS), which also includes data from an integrated INS and GPS, is designed, developed and operated by the Laser Remote Sensing Laboratory, at NASA's GSFC.

Provider POCs	Email Address
Bryan Blair	James.B.Blair@nasa.go v
Michelle Hofton	mhofton@umd.edu
Emily Wilson	emily.l.wilson@nasa.go v
Shar Etemad	shahriar.etemad@nasa. gov

4.3.1 Instruments and Science Data Products

4.3.1.1 Land, Vegetation and Ice Sensor

LVIS is a scanning laser altimeter instrument that is flown, by aircraft, over target areas to collect data on surface topography, surface roughness, and vegetation coverage. LVIS has a scan angle of 12°, which produces a 2-km wide swath from a 10-km flight altitude. LVIS is a full-waveform laser altimeter, and, as such, the transmit and return waveforms are collected for each laser shot and released as the LVIS L1B product.

Table 4-10. LVIS Products

		Dat a		Volume per		Delivery
Short	Product	Lev	Form	Campaig	Submission	Mechani
Name	Description	el	at	n (GB)	Schedule	sm
ILVIS0	IceBridge LVIS	0	Binary	500	1 month	Hard
	L0 Raw Ranges				following	drive
					deployment	
H MGH1	T D '1 TIME	1.0	IIDE5	200	end	EED
ILVGH1 B	IceBridge LVIS GH L1B	1B	HDF5	300	6 months	FTP
В	Geolocated				following deployment	
	Return Energy				end	
	Waveforms				Chu	
ILVGH2	IceBridge LVIS	2	Fixed	30	6 months	FTP
	GH L2		format		following	
	Geolocated		ASCII		deployment	
	Surface				end	
	Elevation					
H MG1D	Product	1.D	IIDE5	200	<i>c</i> 1	EED
ILVIS1B	IceBridge LVIS L1B Geolocated	1B	HDF5	300	6 months	FTP
	Return Energy				following deployment	
	Waveforms				end	
ILVIS2	IceBridge LVIS	2	Fixed	30	6 months	FTP
	L2 Geolocated	_	format		following	
	Surface		ASCII		deployment	
	Elevation				end	
	Product					
IPPLV1	IceBridge LVIS	1B	sbet	20	6 months	FTP
В	POS/AV L1B				following	
	Corrected				deployment	
	Position and				end	
	Attitude Data					

4.4 National Suborbital Education and Research Center

The National Suborbital Education and Research Center (NSERC) is the product of a cooperative agreement between NASA and the University of North Dakota. NSERC supports science mission operations and aircraft deployments for Earth science research campaigns conducted by the NASA Airborne Science Program. NSERC provides payload integration engineering, data display and networking, and facility instrumentation for NASA's fleet of research aircraft, including the DC-8 and P-3B airborne laboratories, the WB-57 high altitude platform, and the Global Hawk Uninhabited Aerial Vehicle, among others.

NSERC is also responsible for education and outreach activities for the Airborne Science Program, including organization and operation of the Student Airborne Research Program (SARP), a college-level summer internship that provides hands-on research experience in airborne science using NASA's flying laboratories.

Provider POCs	Email Address
David van Gilst	d.vangilst@nserc.und.edu

4.4.1 Instruments and Science Data Products

4.4.1.1 On-board Meteorology Suite

in-flight meteorological This is collection of airborne and measurements, and thermal emission measurements of near-nadir surface skin temperature. Instruments flown over Antarctica include cabin 3-stage hygrometer, 2-stage hygrometer, total air temperature sensor, and infrared surface temperature pyrometer. The data files contain measurements for 36 meteorological, surface characteristic, and positional variables.

Table 4-11. On-board Meteorology Suite Products

Short	Product	Dat a Lev	Forma	Volume per Campaign	Submiss ion Schedul	Delivery Mechani
Name	Description	el	t	(GB)	e	sm
IAMET1	IceBridge	1B	ICART	<1	1 month	FTP
В	NSERC L1B		T		after	
	Geolocated				deployme	
	Meteorological				nt	
	and Surface					
	Temperature					
	Data					

4.5 The Airborne Sensor Facility

The Airborne Sensor Facility (ASF) at NASA Ames (ARC) and Armstrong Research Centers provides data system development and operations, and payload integration services for the Airborne Science Program. It is also responsible for the development and operation of remote sensing instruments for the NASA Earth Observing System (EOS) Project Science Office, that are used for satellite calibration and validation, process studies, and algorithm development. This includes field operations, data processing, and the operation of a NIST-traceable calibration laboratory

Provider	Email Address
POCs	
Rose	roseanne.dominguez@na
Dominguez	sa.gov
Jeffrey Myers	jeffrey.s.myers@nasa.go
	v

4.5.1 Instruments and Science Data Products

4.5.1.1 Digital Mapping System Camera

The Digital Mapping System (DMS) is an airborne digital camera that acquires high resolution natural color and panchromatic imagery from low and medium altitude research aircraft. Data acquired by DMS are used by a variety of scientific programs to monitor variation in environmental conditions, assess global change, and respond to natural disasters.

The DMS instrument is maintained and operated by the ASF located at the NASA ARC in Mountain View, California, under the oversight of the EOS Project Science Office at NASA Goddard.

Table 4-12. Digital Mapping System Camera

	Table 4-12. Digital Mapping System Camera					
		Dat		Volume	Submiss	
		a		per	ion	Delivery
Short	Product	Lev	Form	Campaig	Schedul	Mechani
Name	Description	el	at	n (GB)	e	sm
IODCC0	IceBridge DMS L0	0	PDF	1	90 days	Hard
	Camera Calibration					Drive
IODMS0	IceBridge DMS L0	0	jpg	5120	90 days	Hard
	Raw Imagery				-	drive
IODMS1	IceBridge DMS L1B	1B	geotiff	9216	90 days	Hard
В	Geolocated and					drive
	Orthorectified					
	Images					
IPAPP1B	IceBridge POS/AV	1B	sbet	35	90 days	FTP
	L1B Corrected					
	Position and					
	Attitude Data					

4.6 Cirrus Digital Systems

Cirrus Digital Systems is a California based company that processes DMS stereographic imagery and ATM Lidar into a Level 3 Hybrid Surface Model (HSM). The HSM possesses the elevation accuracy of ATM and visual realism and surface resolution of DMS imagery.

Provider	Email Address
POCs	
John Arvesen	arvesen@cirrus-
	designs.com
Ryan Dotson	rdotson@fireballit.com

4.6.1 Instruments and Science Data Products

4.6.1.1 Cirrus HSM

Table 4-13. Cirrus HSM

		Dat		Volume		
		a		per	Submissio	Delivery
Short	Product	Lev	Form	Campaig	n	Mechani
Name	Description	el	at	n (GB)	Schedule	sm
IODMS	IceBridge DMS L3	3	geotiff	~2000	6 months	Hard
3	Photogrammetric				(requires	Drive or
	DEM				L1B ATM	BD-ROM
					data)	

4.7 Lamont- Doherty Earth Observatory

Lamont-Doherty Earth Observatory seeks fundamental knowledge about the origin, evolution and future of the natural world. Its scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity.

Provider POCs	Email Address
Kirsty Tinto	tinto@ldeo.columbia.edu

4.7.1 Instruments and Science Data Products

4.7.1.1 Magnetometer

The NASA IceBridge Scintrex CS-3 Cesium Magnetometer records magnetic field readings and fluxgate values.

Table 4-14. Magnetometer

Short	Product	Dat a Lev	Forma	Volume per Campaig	Submiss ion Schedul	Delivery Mechani
Name	Description	el	t	n (GB)	e	sm
IMCS30	IceBridge Scintrex	0	ASCII	20	5 Months	FTP

Short	Product	Dat a Lev	Forma	Volume per Campaig	Submiss ion Schedul	Delivery Mechani
Name	Description	el	t	n (GB)	e	sm
	CS-3 Cesium Magnetometer L0 Raw Magnetic Field	-			after campaign	
IMCS31 B	IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies	2	ICART T	4	5 Months after campaign	FTP

4.7.1.2 Gravimeter

This gravimeter is a Sander Geophysics AIRGrav airborne gravity system. The AIRGrav data consist of measurements of aircraft attitude and acceleration. Aircraft attitude is provided as one file per flight. Gravity data include latitude and Eötvös corrected values, and the free air correction at various along-flightline spatial filtering scales. Gravity data are organized temporally.

Table 4-15. Gravimeter

Short Name	Product Description	Dat a Lev el	Forma t	Volume per Campai gn (GB)	Submiss ion Schedul e	Delivery Mechani sm
IGGRV1 B	IceBridge Sander AIRGrav L1B Geolocated Free Air Gravity Anomalies	2	ICART T	4	5 Months after campaign	FTP
IGBTH3	IceBridge Sander AIRGrav L3 Bathymetry	4	ASCII	1	1 year	FTP
IGBTH4	IceBridge Sander AIRGrav L4 Bathymetry	4	ASCII	2	1 year	FTP

4.8 University of Texas

The University of Texas Institute for Geophysics (UTIG) is an academic research center best known for projects with an international scope. Prominent research areas include marine geology and geophysics, tectonics, terrestrial and lunar seismology, quantitative and exploration geophysics, and geophysical studies of ice sheets and of climate.

Provider	Email Address
POCs	
Don	blank@ig.utexas.edu
Blankenship	
Duncan Young	duncan@utig.ig.utexas.e
	du

4.8.1 Instruments and Science Data Products

4.8.1.1 GPS / Inertial Measurements

Two GPS-aided Inertial Measurement Units (IMU) are included in this suite. One is standalone and one is integrated with the Scanning Lidar.

Table 4-16. GPS / IMU

		Dat		Volume	Submiss			
		a		per	ion	Delivery		
Short	Product	Lev		Campaig	Schedul	Mechani		
Name	Description	el	Format	n (GB)	e	sm		
IPUTG0	IceBridge GPS L0	0	ELSA/	1	2 months	FTP		
	Raw Satellite		NMEA		post			
	Navigation Data				field; non			
	8				critical			
IPUTI0	IceBridge IMU L0	0	ELSA/	1	2 months	FTP		
	Raw Inertial		MMQ-		post			
	Measurement Unit		50/Nova		field; non			
	Data		tel		critical			
IPUTG1	IceBridge GPS/IMU	1B	ASCII	<1	4 months	FTP		
В	L1B Primary				post field			
	Position and							
	Attitude Solution							
IPUTN1	IceBridge GPS L1B	1B	ASCII	<1	2 months	FTP		
В	Time-Tagged Real-				post field			
	Time Position and							
	Attitude Solution							
ITKTC0	IceBridge L0 Raw	0	ELSA/	<1	2 months	FTP		
	Kinematics GPS		ASCII		post			
	Time Codes		time		field; non			
			stamps		critical			

4.8.1.2 Gravimeter

Three gravimeters have been used by Texas for Operation IceBridge: a Bell Aerospace BGM-3 (#203); a ZLS Corporation ZLS (#S-83); and a Canadian Microgravity GT-1A (#3).

Table 4-17. Gravimeter

		Dat	4-1/, GI	W-1		
		Dat		Volume		D 11
a.	.	a		per		Delivery
Short	Product	Lev	_	Campaig	Submission	Mechani
Name	Description	el	Format	n (GB)	Schedule	sm
IGBGM0	IceBridge BGM-3	0	ELSA/	<1	2 months	FTP
	Gravimeter L0		Counts		post field;	
1	Raw Accelerations		per		non critical	
			second		(retired	
					after AN11)	
IGBGM1	IceBridge BGM-3	1B	ASCII	<1	2 months	FTP
В	Gravimeter L1B				post field;	
	Time-Tagged				(retired	
	Accelerations				after AN11)	
IGBGM2	IceBridge BGM-3	2	ASCII	<1	4 months	FTP
	Gravimeter L2				post field;	
	Geolocated Free				(retired	
	Air Anomalies				after AN11)	
IGZLS1B	IceBridge ZLS	1B	ASCII	<1	2 months	FTP
	Dynamic Gravity				post field;	
	Meter Time-				(only used	
	Registered L1B				for AN11)	
	Vertical					
	Accelerations					
IGCMG1 I	IceBridge CMG 1A	1B	ASCII	<1	2 months	FTP
В	Dynamic Gravity				post field;	
	Meter Time-				(only used	
	Tagged L1B				for AN12)	
	Vertical					
	Accelerations					
IGCMG2	IceBridge CMG	2	ASCII	<1	4 months	FTP
]	GT-1A Gravimeter				post field;	
	L2 Geolocated				(only used	
	Free Air Gravity				for AN12)	
	Disturbances				,	

4.8.1.3 High Capability Radar Sounder (HiCARS)

This is a Very High Frequency (VHF) ice-penetrating radar which operates in frequency-chirped mode from 52.5 to 67.5 MHz. <u>HiCARS</u> allows for phase coherent recording of radar returns for advanced processing. For antennas the system uses twin flat dipoles, one mounted under each aircraft wing providing approximately 18 dB of two-way antenna gain. The peak instantaneous output power is 8kW.

Table 4-18 HiCARS

		Dat		Volume		Delivery
Short	Product	a Lev		per Campaig	Submission	Mechani
Name	Description	el	Format	n (GB)	Schedule	sm
IR1HI0	IceBridge HiCARS 1 L0 Raw Return Energy Amplitudes	0	16-bit offset video Binary	1500	2 months post field; non critical (retired after AN10)	Hard drive
IR1HIB	IceBridge HiCARS 1 L1B Time- Tagged Echo Strength Profiles	1B	NetCDF	120	2 months post field; (retired after AN10; format pending NSIDC approval)	Hard drive
IR1HI2	IceBridge HiCARS 1 L2 Geolocated Ice Thickness	2	ASCII	<1G	4 months post field; (retired after AN10)	FTP
IR2HI0	IceBridge HiCARS 2 L0 Raw Return Energy Amplitudes	0	16-bit offset video Binary	1500	2 months post field; non critical (used after AN10)	Hard drive
IR2HI1 B	IceBridge HiCARS 2 L1B Time- Tagged Echo Strength Profiles	1B	NetCDF	120	2 months post field; (used after AN10 format pending NSIDC approval)	Hard drive
IR2HI2	IceBridge HiCARS 2 L2 Geolocated Ice Thickness	2	ASCII	<1	4 months post field; (retired after AN10)	FTP

4.8.1.4 Laser Altimeter

This is a fixed, nadir pointing Riegl laser altimeter, which is the predecessor to the scanning, Sigma Space lidar.

Table 4-19 Laser Altimeter

Short Name	Product Description	Data Leve l	Forma t	Volume per Campaign (GB)	Submiss ion Schedul e	Delivery Mechani sm
ILUTP0	IceBridge Riegl Laser Altimeter L0 Raw Ranges	0	ELSA/ Riegl	<1	2 months post field; non critical	FTP
ILUTP1 B	IceBridge Riegl Laser Altimeter L1B Time- Tagged Laser Ranges	1B	ASCII	<1	2 months post field	FTP
ILUTP2	IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets	2	ASCII	<1	4 months post field	FTP

4.8.1.5 Scanning Lidar

This is a multi-beam, scanning photon-counting lidar built by Sigma Space. It images the surface below the aircraft with one hundred laser beamlets. This system is mechanically scanned in a swath either side of the flight path. A one hundred channel photon counting receiver captures return photons and records time of flight and time tag data allowing a three-dimensional reconstruction of the surface. At a survey altitude of 800 m, swath width is around 400 m.

Table 4-20 Scanning Lidar

Short Name	Product Description	Data Leve l	Form at	Volume per Campaig n (GB)	Submissio n Schedule	Delivery Mechani sm
ILSSP0	IceBridge Sigma Space Prototype L0 Raw Time- of-Flight Data	0	Sigma Space binary	~1000 to 3000	2 months post field; non critical (Retired after AN09)	Hard drive
ILSIG0	IceBridge Sigma Space Lidar L0 Raw Time-of- Flight Data	0	Sigma Space binary	~1000 to 3000	2 months post field; non critical	Hard drive
ILSIG1	IceBridge Photon	1B	HDF	250	4 months	Hard

Short		Data Leve	Form	Volume per Campaig	Submissio n	Delivery Mechani
Name	Product Description	l	at	n (GB)	Schedule	sm
В	Counting Lidar L1B					drive
	Unclassified Geolocated					
	Photon Elevations					
ILSNP1	IceBridge Sigma Space	1B	HDF5	~1000	4 months	Hard
В	Photon Counting Lidar		(detail		post field	drive
	L1B Time-Tagged Nadir		S			
	Photon Ranges		TBD)			
ILSNP4	IceBridge Merged	4	HDF	<1	4 months	FTP
	Photon Counting				post field	
	Lidar/Profiler L4					
	Surface Slope and					
	Elevations					

4.8.1.6 Magnetometer

There are two magnetometers used for these products. One is a cesium vapor magnetometer used for scalar geomagnetic field strength measurements. The other is a three-axis fluxgate magnetometer used to provide vector magnetic field data for use by the cesium magnetometer.

Table 4-21. Magnetometer

		D .	Magneton		a	
		Dat		Volume	Submiss	
		a		per	ion	Delivery
Short		Lev		Campai	Schedul	Mechani
Name	Product Description	el	Format	gn (GB)	e	sm
IMFGM0	IceBridge Flux Gate	0	ELSA/3	<1	2 months	FTP
	Magnetometer L0 Raw		channel		post	
	Magnetic Field		voltages		field; non	
			(HEX)		critical	
IMGEO0	IceBridge Geometrics	0	ELSA/	<1	2 months	FTP
	823A Cesium		Geometr		post	
	Magnetometer L0 Raw		ics		field; non	
	Magnetic Field				critical	
IMGEO1	IceBridge Geometrics	1B	ASCII	<1	2 months	FTP
В	823A Cesium				post field	
	Magnetometer L1B					
	Time-Tagged Magnetic					
	Field					
IMGEO2	IceBridge Geometrics	2	ASCII	<1	2 months	FTP
	823A Cesium				post field	
	Magnetometer L2					
	Geolocated Magnetic					
	Anomalies					

4.8.1.7 Pressure Altimeter

This instrument measures air pressure via a Paroscientific S-1000 Digiquartz Transmitter.

Table 4-22. Pressure Altimeter

Short Name	Product Description	Data Level	Form at	Volume per Campaig n (GB)	Submis sion Schedu le	Delivery Mechanis m
IAPRS0	IceBridge Paroscientific S-1000 L0 Pressure Altimeter Raw Air Pressure	0	ELSA	<1	2 months post field; non critical	FTP

Short Name	Product Description	Data Level	Form at	Volume per Campaig n (GB)	Submis sion Schedu le	Delivery Mechanis m
IAPRS1B	IceBridge	1B	ASCII	<1	2	FTP
	Paroscientific S-1000				months	
	L1B Pressure Altimeter				post	
	Time-Tagged Air				field	
	Pressure					

4.9 University of Alaska Fairbanks

The University of Alaska Fairbanks (UAF) is a public research university home to seven major research areas. The Geophysical Institute is one of the seven that conducts research into space physics, atmospheric science, seismology, tectonics, and sedimentation.

Provider POCs	Email Address
Christopher	cflarsen@alaska.edu
Larsen	

4.9.1 Instruments and Science Data Products

4.9.1.1 Glacier Lidar

This Glacier Lidar system is capable of generating both surface profiles and scanned altimetry data.

	Table 4-25 Glaciel Llual						
		Data		Volume per	Submissi	Delivery	
Short	Product	Leve	Form	Campaign	on	Mechani	
Name	Description	l	at	(GB)	Schedule	sm	
ILAKP1	IceBridge UAF	1B	Binary	20	3 months	FTP	
В	Lidar Profiler						
	L1B Geolocated						
	Surface						
	Elevation						
	Triplets						
ILAKS1	IceBridge UAF	1B	LAS	135	3 months	FTP	
В	Lidar Scanner				after		
	L1B Geolocated				campaign		
	Surface						
	Elevation						
	Triplets						
IPUAF1	IceBridge UAF	1B	ASCII	1	3 months	FTP	
В	GPS/IMU L1B				after		
	Corrected				campaign		
	Position and						
	Attitude Data						

Table 4-23 Glacier Lidar

4.10 University of California Irvine

The University of California Irvine's (UCI) department of Earth System Science supports the Rignot Research Group. Relative to Operation IceBridge, the group measures ice thickness with an airborne ground penetrating radar called the Warm Ice Sounding Explorer (WISE) which operates at a center frequency of 2.5 MHz and is optimized to probe temperate ice.

Provider POCs	Email Address
Eric Rignot	eric.j.rignot@jpl.nasa.go v
Jeremie Mouginot	jmougino@uci.edu
Bernd Scheuchl	bscheuch@uci.edu

4.10.1 Instruments and Science Data Products

4.10.1.1 WISE

This sounder uses 120-mlong wavelengths to penetrate past rough ice surfaces, voids, water pockets, water-filled cracks, and temperate ice (ice at the in-situ-pressure melting point) before they are reflected by the interface between ice and the glacier bed. This makes the system well suited for the study of outlet glaciers with challenging internal structure, i.e. highly absorptive or scattering heterogeneities associated with the presence of liquid water pockets within the ice.

Table 4-24. WISE

Short Name	Product Description	Data Leve l	Form at	Volume per Campaig n (GB)	Submiss ion Schedul e	Delivery Mechani sm
IRWIS2	IceBridge WISE L2 Ice Thickness and Surface Elevation	2	ASCII	14	6 months	FTP

4.11 Miscellaneous

4.11.1 Data Products

4.11.1.1 Flight Reports

Table 4-25. Flight Reports

				Volume per	Submissi	Delivery
Short	Product	Data	Form	Campaign	on	Mechanis
Name	Description	Level	at	(GB)	Schedule	m
IFLTRPT	IceBridge	n/a	ASCII	1	6 months	FTP
	Mission		and			
	Flight		PDF			
	Reports					

4.11.1.2 Derived Products

The NASA IceBridge Sea Ice Freeboard, Snow Depth, and Thickness (IDCSI4) data set contains derived geophysical data products including sea ice freeboard, snow depth, and sea ice thickness measurements in Greenland and Antarctica retrieved from IceBridge Snow Radar, DMS, CAMBOT, and ATM data sets. The data were collected as part of Operation IceBridge funded campaigns, are stored in American Standard Code for Information Interchange (ASCII) text files, and are available via FTP for periodic, ongoing campaigns from 31 March 2009 to the present.

Provider POCs	Email Address
Nathan Kurtz	nathan.t.kurtz@nasa.go v

Table 4-26. Sea Ice Science Data Products

Short Nam e	Product Description	Data Leve l	Forma t	Volume per Campaig n (GB)	Submission Schedule	Delivery Mechani sm
IDCSI 2	IceBridge Sea Ice Freeboard, Snow Depth, and	2	ASCII	< 1	12 month following deployment	FTP

Short Nam e	Product Description	Data Leve l	Forma t	Volume per Campaig n (GB)	Submission Schedule	Delivery Mechani sm
	Thickness				end	
IDCSI 4	IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness	4	ASCII	<1	12 months	FTP

The Bed Machine data set contains a bed topography/bathymetric map of Greenland based on mass conservation, multi-beam data, and other techniques. The data set also includes surface elevation, ice thickness and an ice/ocean/land mask

Provider POCs	Email Address
Mathieu	mathieu.morlighem@uc
Morlighem	i.edu

Table 4-27. Sea Ice Science Data Products

Short Name	Product Description	Data Leve l	Forma t	Volume per Campaig n (GB)	Submission Schedule	Delivery Mechani sm
IDBMG 4	IceBridge BedMachine Greenland	4	NetCD F	3	12 months	FTP

The following Tomographic derived products were developed by NASA Jet Propulsion Laboratory (JPL) for swath ice sounding. Data was collected by the MCoRDS instrument and processed into bed topography products: ice thickness maps, ice thickness error maps, basal elevation maps, and basal reflectivity maps.

Provider POCs	Email Address
Xiaoqing Wu	Xiaoqing.Wu@jpl.nasa.g
	ov

Table 4.28. Tomographic Products

Short Name	Product Description	Data Leve l	Form at	Volume per Campaign (GB)	Submiss ion Schedul e	Delivery Mechani sm
IRTIT	IceBridge Radar	3	HDF5	2	12	FTP
3	L3 Tomographic				Months	
	Ice Thickness					
IRTTE	IceBridge Radar	3	HDF5	2	12	FTP
3	L3 Tomographic				Months	
	Thickness Error					

5 DATA STEWARDSHIP

The NSIDC DAAC, with support from the ESDIS Project, is responsible for ingest, archive, and distribution of all IceBridge data products. This includes Level 0 data (where specified), higher level products, ancillary data, metadata, algorithm source code, documentation, and other information in accordance with EOS Data and Information System (EOSDIS) archive policies. Responsibilities also include the distribution of the above-mentioned products to users in accordance with the IceBridge mission and EOSDIS data distribution policies. Public release of these data shall conform to the NASA Earth Science Data and Information Policy, which can be found at: http://science.nasa.gov/earth-science/earth-science-data/data-information-policy/.

Previously, NSIDC used an abbreviated ingest process ("fasttrack") which circumvented the approved NASA processes and standards in order to make data available as quickly as possible, and enabled data providers to deliver data with minimal metadata and documentation. That process will no longer be available. All data will be delivered to NSIDC using the steps described below unless ESDIS and the IceBridge Project Science Office grant specific exceptions.

In order to ensure that NASA's expectations for data preservation and usability are met, NSIDC may delay publication of any data set that is not delivered with full documentation (as specified in the NASA documentation content specifications) or that does not meet delivery requirements.

5.1 Acceptance of New Data Sets

Before a new IceBridge data product is sent to the NSIDC DAAC, the following steps must first be implemented:

- 5.1.1 A description of the data product in question will be documented by the provider and sent to the Operation IceBridge Project Science Office, the ESDIS Project, and the NSIDC DAAC. This description will include:
 - a) A description of the science content of the data product and its relevance to Operation IceBridge science requirements.
 - b) Level of product (0-4)
 - c) Expected data volume (per life of mission)
 - d) Current archive location
- 5.1.2 Review by ESDIS and the Project Science Office. Any new product that is proposed will be reviewed by ESDIS and the Operation IceBridge Project Science Office to make sure that the product is scientifically relevant, within the scope of the Operation IceBridge mission objectives, and that sufficient resources are available to support it. An evaluation of its current archive status will be made to determine if the product can be "brokered", or linked, from its existing location rather than ingested into NSIDC's data archive. Only when data is judged to be safely archived and sufficiently documented will a brokering arrangement be considered. In the case of brokering, NSIDC enables discovery of the data through appropriate links,

but bears no further responsibility to the data.

- 5.1.3 Create appropriate short names and long names for each data product. NSIDC will do this in conjunction with the provider.
- 5.1.4 ESDIS will update this Data Management Plan.

5.2 Data Submission Process

This process applies to all IceBridge data sets that are not currently archived in NSIDC's Earth Core System (ECS) system (unless ESDIS and the IceBridge Project Science Office grant an exception). As of March 2013, only UARC has been granted said exception for the DMS data sets.

As part of each new submission, each provider must provide NSIDC with the information required to create and validate an Earth Science Data Type (ESDT) that defines the structure of the data set. Once created, the ESDT is maintained as long as the data set structure does not change.

The provider is responsible for providing NSIDC with information required for any updates to the ESDT and notifying NSIDC if changes are planned to the content or structure of the data set. The ESDT must be consistent with the content of expected data delivery.

In order to efficiently ingest data into NSIDC's ECS system, ESDIS has created (through its ECS contractor) a generic tool for creation of necessary metadata and associated files. This tool, called "SIPSMetGen", is given to each provider along with associated configuration files for its correct operation.

Details of how to run the SIPSMetGen tool will be included with the tool package. Details of how data ingestion to NSIDC will now work using SIPSMetGen can be found in the IceBridge Science Investigator-led Processing System (SIPS) Operational Concept Document located at:

https://n5eil01u.ecs.nsidc.org/PullDir/OIB_SIPSMetGen/latest/SIPSMetGen_2.0.1_UserGuide.pdf

The providers retain full responsibility for data and control over metadata quality. This process is simply a mechanism for automated ingest to NSIDC.

- 5.2.1.1 Before the first submission, the provider is responsible for performing integration testing with NSIDC to ensure that data will routinely be ingested successfully without excessive manual intervention by NSIDC's Operations staff.
- 5.2.1.2 The provider is responsible for running the SIPSMetGen tool and creating the necessary metadata and Product Delivery Record (PDR) files before each data submission. After receipt of ingest status notices from ECS, the provider (with support from NSIDC and the ECS contractor) is responsible for all error correction and re-delivery.

5.3 Naming Conventions

Science data files and their associated supporting files (such as browse, quality assurance, preliminary metadata ("premet"), and spatial files) must use a standard naming convention. A file and its associated files should use the same name; the file extension distinguishes the data file from the associated files. File names should include the ESDT shortname, date and time of data collection, version identification, and any additional information that might be needed to uniquely identify the data file.

Example, for ATM L1B data:

Data file: ILATM1B_V01_04212010_04452366_A.h5

Premet file: ILATM1B_V01_04212010_04452366_A.premet

Spatial file: ILATM1B_V01_04212010_04452366_A.spatial

Abbreviations and Acronyms

AK	Alaska		
ARC	AMES Research Center		
ASCII	American Standard Code for Information Interchange		
ASF	Airborne Sensor Facility		
ATM	Airborne Topographic Mapper		
CAMBOT	Continuous Airborne Mapping by Optical Translator		
CReSIS	Center for Remote Sensing of Ice Sheets		
CSV	Comma Separated Value		
DAAC	Distributed Active Archive Center		
dB	Decibel		
DCN	Document Change Notice		
DDS	Direct-Digital Synthesizer		
DMS	Digital Mapping System		
ECS	EOSDIS Core System		
EED	EOSDIS Evolution and Development		
ELSA	Environment for Linked Stream Acquisition		
EOS	Earth Observing System		
EOSDIS	EOS Data and Information System		
ESD	Earth Science Division		
ESDIS	Earth Science Data and Information System		
ESDT	Earth Science Data Type		
FTP	File Transfer Protocol		
GB	Giga Byte 10 ⁹ bytes		
GHZ	Giga Hertz		
GPS	Global Positioning System		
GSFC	Goddard Space Flight Center		
HDF	Hierarchical Data Format		
HEX	Hexadecimal		
HiCARS	High Capability Radar Sounder		
HSM	Hybrid Surface Model		
ICARTT	International Consortium for Atmospheric Research on Transport and		
	Transformation		
ICESat	Ice, Cloud and Land Elevation Satellite		
IMU	Inertial Measurement Units		
INS	Inertial Navigation System		
JPEG	Joint Pictures Expert Group		
JPL	Jet Propulsion Laboratory		
Km	Kilometers		
KML	Keyhole Markup Language		
L0 – L4	Level 0 through Level 4		
LAS	Live Access Server		
LIDAR	Laser Imaging Detection and Ranging		

LVIS	Land, Vegetation, and Ice Sensor
МВ	Mega Byte 10 ⁶ bytes
Mbps	Mega bits per second
MCoRDS	Multichannel Coherent Radar Depth Sounder
MHz	Mega Hertz
NASA	National Aeronautics and Space Administration
NMEA	National Marine Electronics Association
NetCDF	Network Common Data Form
NIST	National Institute of Standards and Technology
NSERC	National Suborbital Education and Research Center
NSF	National Science Foundation
NSIDC	National Snow and Ice Data Center
PARIS	Pathfinder Advanced Radar Ice Sounder
PDF	Portable Document Format
PDR	Product Delivery Record
PNG	Portable Network Graphics
POC	Point of Contact
POS	Product Order Status
SAR	Synthetic Aperture Radar
SARP	Student Airborne Research Program
SCP	Secure Copy Protocol
SFTP	Secure FTP
SIPS	Science Investigator-led Processing System
STC	Science and Technology Center
TBD	To Be Determined
UAF	University of Alaska Fairbanks
UARC	University Affiliated Research Center
UC	University of California
UCI	University of California Irvine
UTIG	University of Texas Institute for Geophysics
VHF	Very High Frequency
WFF	Wallops Flight Facility
WISE	Warm Ice Sounding Explorer
ZLS	Zero-Length Spring Corporation